Mojo 🔥 — a new programming language for all AI developers.

Mojo combines the usability of Python with the performance of C, unlocking unparalleled programmability of AI hardware and extensibility of AI models.

def softmax(lst):
  norm = np.exp(lst - np.max(lst))
  return norm / norm.sum()
def softmax(lst):
  norm = np.exp(lst - np.max(lst))
  return norm / norm.sum()

struct NDArray:
  def max(self) -> NDArray:
    return self.pmap(SIMD.max)

struct SIMD[type: DType, width: Int]:
  def max(self, rhs: Self) -> Self:
    return (self >= rhs).select(self, rhs)

Write everything in one language

Write Python or scale all the way down to the metal. Program the multitude of low-level AI hardware. No C++ or CUDA required.

Take a tour of Mojo
def sort(v: ArraySlice[Int]):
  for i in range(len(v)):
    for j in range(len(v) - i - 1):
      if v[j] > v[j + 1]:
        swap(v[j], v[j + 1])
struct MyPair:
  var first: Int
  var second: F32
  
  def __init__(self, first: Int, second: F32):
    self.first = first
    self.second = second
def reorder_and_process(owned x: HugeArray):
  sort(x)	# Update in place
  
  give_away(x^)	# Transfer ownership
  
  print(x[0])	# Error: ‘x’ moved away!
def exp[dt: DType, elts: Int]
    (x: SIMD[dt, elts]) -> SIMD[dt, elts]:
  x = clamp(x, -88.3762626647, 88.37626266)
  k = floor(x * INV_LN2 + 0.5)
  r = k * NEG_LN2 + x
  return ldexp(_exp_taylor(r), k)
def exp_buffer[dt: DType](data: ArraySlice[dt]):

  # Search for the best vector length
  alias vector_len = autotune(1, 4, 8, 16, 32)
  
  # Use it as the vectorization length
  vectorize[exp[dt, vector_len]](data)

The full power of MLIR

Parallel heterogenous runtime

Fast compile times

def sort(v: ArraySlice[Int]):
  for i in range(len(v)):
    for j in range(len(v) - i - 1):
      if v[j] > v[j + 1]:
        swap(v[j], v[j + 1])
struct MyPair:
  var first: Int
  var second: F32
  
  def __init__(self, first: Int, second: F32):
    self.first = first
    self.second = second
def reorder_and_process(owned x: HugeArray):
  sort(x)	# Update in place
  
  give_away(x^)	# Transfer ownership
  
  print(x[0])	# Error: ‘x’ moved away!
def exp[dt: DType, elts: Int]
    (x: SIMD[dt, elts]) -> SIMD[dt, elts]:
  x = clamp(x, -88.3762626647, 88.37626266)
  k = floor(x * INV_LN2 + 0.5)
  r = k * NEG_LN2 + x
  return ldexp(_exp_taylor(r), k)
def exp_buffer[dt: DType](data: ArraySlice[dt]):

  # Search for the best vector length
  alias vector_len = autotune(1, 4, 8, 16, 32)
  
  # Use it as the vectorization length
  vectorize[exp[dt, vector_len]](data)

Unlock Python performance

Utilize the full power of the hardware, including multiple cores, vector units, and exotic accelerator units, with the world's most advanced compiler and heterogenous runtime. Achieve performance on par with C++ and CUDA without the complexity.

Mojo leverages MLIR, which enables Mojo developers to take advantage of vectors, threads, and AI hardware units.

Single-threaded execution

Parallel processing across multiple cores

1027 s
1x
46.1 s
22x
0.20 s
5000x
0.03 s
35000x
* Algorithm
Mandelbrot
Instance
AWS r7iz.metal-16xl
Intel Xeon

Access the entire Python ecosystem

Experience true interoperability with the Python ecosystem. Seamlessly intermix arbitrary libraries like Numpy and Matplotlib and your custom code with Mojo.

Read the programming manual
MAKE_PLOT.🔥
def make_plot(m: Matrix):
  plt = Python.import_module("matplotlib.pyplot")
  fig = plt.figure(1, [10, 10 * yn // xn], 64)
  ax = fig.add_axes([0.0, 0.0, 1.0, 1.0], False, 1)
  plt.imshow(image)
  plt.show()

make_plot(compute_mandelbrot())
Mojo 🔥

Upgrade your models and the Modular stack

Easily extend your models with pre and post-processing operations, or replace operations with custom ones. Take advantage of kernel fusion, graph rewrites, shape functions, and more.

Mojo can upgrade the existing operations in your model.

Try Mojo 🔥 out right now in our Playground

Mojo is still a work in progress, but it's available to try today in our JupyterHub-based Playground. Run through tutorials and write your own Mojo code.

Sign up for access
Mojo 🔥

01.

We have plenty of easy-to-use Jupyter notebooks to help you get started learning Mojo 🔥.

02.

Our docs will help you quickly discover why Mojo is such a powerful extension to Python, and the future of AI programming.

03.

Come and chat with us on our Discord, and help shape the future of the language as we continue to develop it.

Ready to play with Mojo?

Reach out to gain access to the Mojo Playground.

Read the Mojo docs